Первое счетное устройство. Вычислительная техника история развития вычислительной техники. Основные этапы развития вычислительной техники

Самыми первыми вычислительными приспособлениями были собственные пальцы человека. Когда этого средства оказывалось недостаточно, в ход шли камушки, палочки, ракушки. Складывая такой набор десятками, а затем и сотнями, человек учился считать и пользоваться средствами измерения чисел. Именно с камушков и ракушек началась история развития вычислительной техники. Раскладывая их по разным столбцам (разрядам) и добавляя или убирая нужное количество камушков, можно было производить сложение и вычитание больших чисел. При многократном сложении можно было выполнять даже такое сложное действие, как умножение.

Затем начинается история развития средств Первым средством для вычисления стали изобретенные на Руси счеты. В них числа разбивались на десятки с помощью горизонтальных направляющих с косточками. Они стали незаменимым помощником торговцев, чиновников, приказчиков и управляющих. Эти люди умели пользоваться счетами просто виртуозно. В дальнейшем такое необходимое устройство проникло и в Европу.

Самым первым механическим устройством для счета, которое знает история развития вычислительной техники, стала счетная машина, которую в 1642 году построил выдающийся французский ученый Блез Паскаль. Его механический «компьютер» мог производить такие действия, как сложение и вычитание. Эту машину звали «Паскалина» и состояла она из целого комплекса, в котором устанавливались вертикально колеса с нанесенными цифрами от 0 до 9. Колесо при полном обороте цепляло соседнее колесо и поворачивало его на одну цифру. Количество колес определяло количество разрядов вычислительной машины. Если на ней устанавливали пять колес, то она могла уже проводить операции с огромными числами вплоть до 99999.

Затем в 1673 году немецкий математик Лейбниц создал устройство, которое могло не только вычитать и складывать, но также делить и умножать. В отличие от колеса были зубчатые и имели девять разных длин зубьев, чем и обеспечивались такие невероятно «сложные» действия, как умножение и деление. техники знает много имен, но одно имя известно даже неспециалистам. Это английский математик Его заслуженно называют отцом всей современной вычислительной техники. Именно ему принадлежит идея, что в вычислительной машине необходимо устройство, которое будет хранить числа. Причем это устройство должно не только хранить числа, но и давать команды вычислительной машине, что она должна с этими числами делать.

Идея Бэббиджа и легла в основу устройства и разработки всех современных компьютеров. Такой блок в вычислительной процессором. Однако ученый не оставил никаких чертежей и описаний машины, которую он изобрел. Это сделал один из его учеников в своей статье, которую он написал на французском языке. Статью прочитала графиня Ада Августа Лавлейс - дочь знаменитого поэта Джорджа Байрона, которая перевела ее на английский язык и разработала для этой машины собственные программы. Благодаря ей история развития вычислительной техники получила один из самых совершенных языков программирования - АДА.

XX век дал новый толчок развитию вычислительной техники, связанный с электричеством. Было изобретено электронное устройство, которое запоминало электрические сигналы - ламповый триггер. Созданные с его помощью первые компьютеры могли считать в тысячи раз быстрее, чем самые совершенные механические счетные машины, но были еще очень громоздкими. Первые ЭВМ весили около 30 тонн и занимали помещение размером больше 100 кв. метров. Дальнейшее развитие получили с появлением чрезвычайно важного изобретения - транзистора. Ну а современные средства вычислительной техники немыслимы без применения микропроцессора - сложной интегральной микросхемы, разработанной в июне 1971 года. Такова краткая история развития вычислительной техники. Современные достижения науки и техники подняли уровень современных компьютеров на небывалую высоту.

Глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка , механический арифмометр, электронный компьютер . Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

Ранние приспособления и устройства для счёта

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы , которые стали, таким образом, одним из первых устройств для количественного определения массы .

Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм , обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

«Считающие часы» Вильгельма Шиккарда

За этим последовали машины Блеза Паскаля («Паскалина », 1642 г.) и Готфрида Вильгельма Лейбница .

ANITA Mark VIII, 1961 год

В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве .

Появление аналоговых вычислителей в предвоенные годы

Основная статья: История аналоговых вычислительных машин

Дифференциальный анализатор, Кембридж, 1938 год

Первые электромеханические цифровые компьютеры

Z-серия Конрада Цузе

Репродукция компьютера Zuse Z1 в Музее техники, Берлин

Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 - первый компьютер с памятью на магнитных носителях.

Британский Colossus

В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

Применение полупроводников позволило улучшить не только центральный процессор , но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed ) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable ) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам . Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак . Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты .

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин »), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия . Машину Калмара назвали арифмометр . Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины , которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada . День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные . Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором , могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1 », по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1 » был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте . Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами . Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора , но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple ; в СССР ПК появились в 1985г .

Таблица 1. Поколения ЭВМ

Показатель

Поколения ЭВМ

1950-1960-е годы

1960-1970-е годы

1970-1980-е годы

Четвертое

1980-1990-е годы

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Магнитный диск

Перфоленты, магнитный диск (30 см в диаметре)

Магнитные и оптические диски

Максимальная емкость ОЗУ, байт

Максимальное быстродействие процессора (оп/с)

Многопроцессорность

Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов





























































































































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  1. познакомить с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями
  2. дать представление о связи развития ЭВМ с развитием человеческого общества,
  3. познакомить с основными особенностями ЭВМ разных поколений.
  4. Развитие познавательного интереса, умение использовать дополнительную литературу

Тип урока: изучение нового материала

Вид: урок-лекция

Программно-дидактическое обеспечение: ПК, слайды презентации с изображением основных устройств, портретов изобретателей и ученых.

План урока:

  1. Организационный момент
  2. Актуализация новых знаний
  3. Предыстория компьютеров
  4. Поколения ЭВМ (компьютеров)
  5. Будущее компьютеров
  6. Закрепление новых знаний
  7. Подведение итогов урока
  8. Домашнее задание

1. Организационный момент

Задача этапа : Подготовить учащихся к работе на уроке. (Проверить готовность класса к уроку, наличие школьных необходимых принадлежностей, посещаемость)

2. Актуализация новых знаний

Задача этапа : Подготовка учащихся к активному усвоению новых знаний, обеспечить мотивацию и принятие учащимися цели учебно – познавательной деятельности. Постановка целей урока.

Здравствуйте! Как вы думаете, какие технические изобретения особенно изменили способы труда человека?

(Ученики высказывают свои мнения по данному вопросу, по необходимости учитель их корректирует)

- Вы правы, действительно, основным техническим устройством, повлиявшим на труд человека, является изобретение компьютеров - электронно – вычислительных машин. Сегодня на уроке, мы с вами узнаем, какие вычислительные устройства предшествовали появлению компьютеров, как изменялись сами компьютеры, последовательность становления компьютера, когда машина предназначенная просто для счёта стала сложным техническим устройством. Тема нашего урока: «История вычислительной техники. Поколения компьютеров». Цель нашего урока: познакомиться с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями познакомиться с основными особенностями ЭВМ разных поколений.

На уроке мы будем работать с помощью мультимедийной презентации, состоящей из 4-х разделов «Предыстория компьютеров», «Поколения компьютеров», «Галерея учёных», «Компьютерный словарь». В каждом разделе есть подраздел «Проверь себя» - это тест, в котором вы сразу узнаете результат.

3. Предыстория компьютеров

Обратить внимание учеников, что ЭВМ – это электронно-вычислительная машина, другое название «компьютер» или «computer» произошло от английского глагола «compute» – вычислять, поэтому слово «компьютер» можно перевести как «вычислитель». То есть и в слове ЭВМ и в слове компьютер главный смысл это вычисления. Хотя мы с вами хорошо знаем, что современные ЭВМ позволяют не только вычислять, но и создавать и обрабатывать тексты, рисунки, видео, звук. Заглянем в историю…

(параллельно оформляем в тетради таблицу «Предыстория компьютеров»)

«Предыстория компьютеров»

Древний человек счетом овладел раньше, чем письменностью. В качестве первого помощника в счете человек избрал свои пальцы. Именно наличие десяти пальцев легло в основу десятичной системы счисления. В разных странах говорят и пишут на разных языках, а считают одинаково. В 5-ом веке до н.э. греки и египтяне использовали для счета – АБАК – устройство, похожее на русские счеты.

Абак – греческое слово и переводится как счетная доска. Идея его устройства заключается в наличии специального вычислительного поля, где по определенным правилам перемещают счетные элементы. Действительно первоначально абак представлял собой доску, покрытую пылью или песком. На ней можно было чертить линии и перекладывать камешки. В Древней Греции абак служил преимущественно для выполнения денежных расчетов. В левой части подсчитывались крупные денежные единицы, а в правой – мелочь. Счет велся в двоично-пятеричной системе счислении. На такой доске было легко складывать и вычитать, добавляя или убирая камешки и перенося их из разряда в разряд.

Придя в Древний Рим абак, изменился внешне. Римляне стали изготавливать его из бронзы, слоновой кости или цветного стекла. На доске присутствовали два ряда прорезей, по которым можно было передвигать косточки. Абак превратился в настоящий счетный прибор, позволяющий представлять даже дроби, и был значительно удобнее греческого. Римляне называли это устройство calculare – «камешки». Отсюда произошел латинский глагол calculare – «вычислять», а от него – русское слово «калькулятор».

После падения Римской империи произошел упадок науки и культуры и абак был закрыт на некоторое время. Возродился он и распространился по Европе только в X веке. Абаком пользовались купцы, менялы, ремесленники. Даже спустя шесть столетий абак оставался важнейшим инструментом для выполнения вычислений.

Естественно, что в течение такого большого промежутка времени абак менял свой внешний вид и в XLL-XLLLвв.он приобрел форму так называемого счета на линиях, так и между ними. Такая форма счета в некоторых европейских странах сохранялась до конца XVLLLв. и лишь затем окончательно уступила место вычислениям на бумаге.

В Китае абак был известен с LV века до нашей эры. На специальной доске выкладывались счетные палочки. Постепенно их сменили разноцветные фишки, а в V веке появились китайские счеты – суан-пан. Они представляли собой раму с двумя рядами нанизанных на прутики косточек. На каждом прутике их было по семь. Из Китая суан-пан пришел в Японию. Произошло это в XVL веке и устройство получило название «соробан».

В Росси счеты появились в то же время, что и в Японии. Но русские счеты были изобретены самостоятельно, что доказывают следующие факторы. Во-первых, русские счеты очень сильно отличаются от китайских. Во-вторых, это изобретение имеет свою историю.

В России был распространен «счет костьми». Он был близок европейскому счету на линиях, но писцы использовали вместо жетонов плодовые косточки. В XVL возник дощаной счет, первый вариант русских счетов. Такие счеты хранятся сейчас в Историческом музе в Москве.

Счеты в России использовались почти 300 лет и сменили их только дешевые карманные калькуляторы.

Первое в мире автоматическое устройство, которое могло выполнять сложение, было создано на базе механических часов, и разработал его в 1623 году Вильгельм Шикард, профессор кафедры восточных языков в одном из университетов Германии. Но неоценимый вклад в развитие устройств помогающих выполнять вычисления, безусловно внесли Блез Паскаль, Годфрид Лейбниц и Чарльз Беббидж.

В 1642 году один из крупнейших ученых в истории человечества – французский математик, физик, философ и богослов Блез Паскаль изобрел и изготовил механическое устройство для складывания и вычитания чисел – АРИФМОМЕТР. ? Как вы думаете, из какого материала был сделан первый в истории арифмометр? (дерево).

Главная идея конструкции будущей машины была сформирована – автоматический перенос разряда. «Каждое колесо… некоторого разряда, совершая движение на десять арифметических цифр, заставляет двигаться следующее только на одну цифру» - эта формула изобретения утверждала приоритет Блеза Паскаля в изобретении и закрепила за ним право производить и продавать машины.

Машина Паскаля осуществляла сложение чисел на специальных дисках - колесиках. Десятичные цифры пятизначного числа задавались поворотами дисков, на которые были нанесены цифровые деления. Результат читался в окошечках. Диски имели один удлиненный зуб, чтобы можно было учесть перенос в следующий разряд.

Исходные числа задавались поворотами наборных колес, вращение ручки приводило в движение различные шестерни и валики, в итоге специальные колеса с цифрами показывали результат выполнения сложения или вычитания.

Паскаль был одним из величайших гениев человечества. Он был математиком, физиком, механиком, изобретателем, писателем. Его имя носят теоремы математики и законы физики. В физике есть единица измерения давления Паскаль. В информатике его имя носит один из самых популярных языков программирования.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц изобрел и изготовил арифмометр, который мог не только складывать и вычитать числа, но и умножать и делить. Скудость, примитивность первых вычислительных аппаратов не помешала Паскалю и Лейбницу высказать ряд интересных идей о роли вычислительной техники в будущем. Лейбниц писал о машинах, которые будут работать не только с числами, но и сос словами, понятиями, формулами, могли выполнять логические операции. Эта идея большинству современников Лейбница казалась абсурдом. В 18 веке взгляды Лейбница были осмеяны великим английским сатириком Дж.Свифтом, автором известного романа «Путешествия Гулливера».

Лишь в 20-ом веке стала понятна значительность идей Паскаля и Лейбница.

Наряду с устройствами для вычислений развивались и механизмы для АВТОМАТИЧЕСКОЙ РАБОТЫ ПО ЗАДАННОЙ ПРОГРАММЕ (музыкальные автоматы, часы с боем, ткацкие станки Жаккарда).

В начале 19-го века английский математик Чарльз Беббидж, занимавшийся составлением таблиц для навигации, разработал ПРОЕКТ вычислительной «аналитической» машины, в основе которого лежал ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ (ППУ). Новаторская мысль Беббиджа была подхвачена и развита его ученицей Адой Лавлейс, дочерью поэта Джорджа Байрона – которая стала первой программисткой в мире. Однако практическая реализация проекта Беббиджа была невозможной из-за недостаточного развития промышленности и техники.

Основные элементы машины Беббиджа, присущие современному компьютеру:

  1. Склад – устройство, где хранятся исходные числа и промежуточные результаты. В современно компьютере это память.
  2. Фабрика – арифметическое устройство, в котором осуществляются операции над числами, взятые из Склада. В современном компьютере это Процессор.
  3. Блоки ввода исходных данных – устройство ввода.
  4. Печать результатов – устройство вывода.

Архитектура машины практически соответствует архитектуре современных ЭВМ, а команды, которые выполняла аналитическая машина, в основном включают все команды процессора.

Интересным историческим фактом является то, что первую программу для аналитической машины написал Ада Августа Лавлейс – дочь великого английского поэта Джорджа Байрона. Именно Беббидж заразил ее идеей создания вычислительной машины.

Идея программирования механических устройств с помощь перфокарты впервые была реализована в 1804 году в ткацком станке. Впервые применили их конструкторы ткацких станков. Преуспел в этом дел лондонский ткач Жозеф Мари Жаккард. В 1801 году он создал автоматический ткацкий станок, управляемый перфокартами.

Нить поднималась или опускалась при каждом ходе челнока в зависимости от того, есть отверстие или нет. Поперечная нить могла обходить каждую продольную той Ии иной стороны в зависимости от программы на перфокарте, создавая тем самым затейливый узор из переплетенных нитей. Такое плетение получило название «жаккард» и считается одним из самых сложных и запутанных плетений. Такой ткацкий станок, работающий по программе, был первым массовым промышленным устройством и считается одним из самых совершенных машин, когда-либо созданных человеком.

Идея записи программы на перфокарте пришла в голову и первой программистке Аде Августе Лавлейс. Именно она предложила использовать перфорированные карты в аналитической машине Беббиджа. В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цвета и листья».

Герман Холлерит также использовал в своей машине перфокарты для записи и обработки информации. Перфокарты использовались и в компьютерах первого поколения.

До 40-х годов двадцатого века вычислительная техника представлялась арифмометрами, которые из механических стали электрическими, где электромагнитные реле затрачивали на умножение чисел несколько секунд, которые работали точно по тем же принципам, как и арифмометры Паскаля и Лейбница. Кроме того, они были очень ненадежны, часто ломались. Интересно, что однажды причиной поломки электрического арифмометра оказался мотылек, застрявший в реле, по-английски «мотылек, жук» – bug, отсюда появилось понятие «жучок» как неполадка в ЭВМ.

Герман Холлерит родился 29 февраля 1860 года в американском городе Буффало в семье немецких эмигрантов. Герману легко давались математика и естественные науки, и в 15 лет он поступил в Горную школу при Колумбийском университете. На способного юношу обратил внимание профессор того же университета и пригласил его после окончания школы в возглавляемое им национальное бюро по переписи населения. Перепись населения производилась каждые десять лет. Население постоянно росло, и ее численность в США к тому времени составляло около 50 миллионов человек. Заполнить на каждого человека карточку вручную, а затем подсчитать и обработать результаты, было практически невозможно. Этот процесс затянулся на несколько лет, почти до следующей переписи. Необходимо было найти выход из этой ситуации. Герману Холлериту идею механизировать этот процесс подсказал доктор Джон Биллингс, возглавлявший департамент сводных данных. Он предложил использовать для записи информации перфокарты. Свою машину Холлерит назвал табулятором и в 1887 году он был опробован в Балтиморе. Результаты оказались положительными, и эксперимент повторили в Сент-Луисе. Выигрыш во времени был почти десятикратным. Правительство США сразу же заключило с Холлеритом контракт на поставку табуляторов, и уже в 1890 году перепись населения прошла с использованием машин. Обработка результатов заняла менее двух лет и сэкономила 5 миллионов долларов. Система Холлерита не только обеспечивала высокую скорость, но и позволяла сравнить статистические данные по самым разным параметрам. Холлерит разработал удобный клавишный перфоратор, позволяющий пробивать около 100 отверстий в минуту одновременно на нескольких картах, автоматизировал процедур подачи и сортировки перфокарт. Сортировку осуществляло устройство в виде набора ящиков с крышками. Перфокарты продвигались по своеобразному конвейеру. С одной стороны карты находились считывающие штыри на пружинках, с другой – резервуар с ртутью. Когда штырь попадал в отверстие на перфокарте, то благодаря ртути, находящейся на другой стороне, замыкал электрическую цепь. Крышка соответствующего ящика открывалась и туда попадала перфокарта. Табулятор использовали для переписи населении в нескольких странах.

В 1896 году герма Холлерит сновал компанию Tabulating Machine Company (TMC) и его машины применялись повсюду – и на крупных промышленных предприятиях и в обычных фирмах. И в 1900 году табулятор использовался для переписи населения. переименовывает фирму в IBM (International Business Machines).

4. Поколения ЭВМ (компьютеров)

(параллельно оформляем записи в тетради и таблицу «Поколения ЭВМ (компьютеров)»)

ПОКОЛЕНИЯ ЭВМ
период Элементная база Быстро-действие (оп/сек.) Носители информации программы применение Примеры ЭВМ
I
II
III
IV
V

I поколение ЭВМ: В 30-х годах 20-го века в развитии физики произошел прорыв, коренной переворот. В вычислительных машинах стали использоваться уже не колеса, валики и реле, а вакуумные электронные лампы. Переход от электромеханических элементов к электронным сразу увеличил быстродействие машин в сотни раз. Первая действующая ЭВМ была построена в США в 1945 году, в университете штата Пенсильвания учеными Эккертом и Моучли и называлась ЭНИАК. Эта машина была построена по заказу министерства обороны США для средств ПВО, для автоматизации управления. Чтобы правильно рассчитать траекторию и скорость движения снаряда для поражения воздушной цели, надо было решить систему из 6-ти дифференциальных уравнений. Эту задачу и должна была решать первая ЭВМ. Первая ЭВМ занимала два этажа одного здания, весила 30 тонн и состояла из десятков тысяч электронных ламп, которые соединялись проводами, общая протяженность которых составляла 10 тысяч км. Когда ЭВМ ЭНИАК работала, электричество в городке отключалась, так много электричества потреблялось этой машиной, электронные лампы быстро перегревались и выходили из строя. Целая группа студентов занималась только тем, что непрерывно искала и заменяла перегоревшие лампы.

В СССР основоположником вычислительной техники стал Сергей Алексеевич Лебедев, создавший МЭСМ (малая счетная машина) 1951 год (Киев) и БЭСМ (быстродействующая ЭСМ) – 1952 г., Москва.

II поколение: В 1948 году американским ученым Уолтером Брайттеном был изобретен ТРАНЗИСТОР, полупроводниковый прибор, который заменил радиолампы. Транзистор был намного меньше радиолампы, был более надежным и потреблял намного меньше электричества, он один заменял 40 электронных ламп! Вычислительные машины стали меньше в размерах и значительно дешевле, их быстродействие достигло нескольких сот операций в секунду. Теперь ЭВМ были размером с холодильник, их могли приобрести и использовать научные и технические институты. В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня БЭСМ-6.

III поколение: Вторая половина 20-го века характеризуется бурным развитием науки и техники, особенно физики полупроводников и с 1964 года транзисторы стали размещать на микросхемах, выполненных на поверхностях кристаллов. Это позволило преодолеть миллионный барьер в быстродействии.

IV поколение: Начиная с 1980 года ученые научились на одном кристалле размещать несколько интегральных микросхем, развитие микроэлектроники привело к созданию микропроцессоров. Кристалл ИС меньше и тоньше контактной линзы. Быстродействие современных ЭВМ исчисляется сотнями миллионов операций в секунду.

В 1977 году появился первый ПК (персональный компьютер) фирмы Apple Macintosh. С 1981 года лидером в производстве ПК стала фирма IBM (International Business Machine), эта фирма работала на рынке США еще с 19-го века и выпускала различные устройства для офисов – счеты, арифмометры ручки и т.д. и зарекомендовала себя как надежная фирма, которой доверяло большинство деловых людей в США. Но не только поэтому ПК IBM были намного популярнее, чем ПК Apple Macintosh. ПК Apple Macintosh представляли собой “черный ящик” для пользователя – он не разобрать модернизировать ПК, присоединять к ПК новые устройства, а ПК IBM были открыты для пользователя и тем самым позволяли собирать ПК как детский конструктор, поэтому большинство пользователей выбрали ПК IBM. Хотя мы с вами при слове ЭВМ представляем именно ПК, но существуют задачи, которые даже современные ПК решить не могут, с которыми могут справиться только суперЭВМ, быстродействие которых исчисляется миллиардами операций в секунду.

Научная школа Лебедева по своим результатам успешно соперничала с ведущей фирмой США IBM . Среди ученых мира, современников Лебедева, нет человека, который подобно ему обладал бы столь мощным творческим потенциалом, чтобы охватить своей научной деятельностью период от создания первых ламповых ЭВМ до сверхбыстродействующей суперЭВМ. Когда американский ученый Норберт Винер, которого называют «первый киберпророк», в 1960 году приезжал в СССР, он отметил « Они совсем немного отстают от нас в аппаратуре, зато далеко впереди нас в ТЕОРИИ автоматизации». К сожалению, в 60-х годах наука кибернетика подвергалась гонениям, как «буржуазная лженаука», ученых-кибернетиков сажали в тюрьмы, из-за чего советская электроника стала заметно отставать от зарубежной. Хотя создавать новые ЭВМ становилось невозможным, запретить мыслить ученым никто не мог. Поэтому до сих пор наши российские ученые опережают мировую научную мысль в области теории автоматизации.

Для разработки программ для ЭВМ создавались различные языки программирования (алгоритмические языки). Фортран FORTRAN – FORmula TRANslated – первый язык, создан в 1956 году Дж. Бэкусом. В 1961 году появился Бейсик BASIC (Beginners All-purpose Simbolic Instartion Code –многоцелевой язык символических инструкций для начинающих) Т.Куртц, дж. Кемени.В 1971 году профессор Цюрихского университета Николас Вирт создал язык Паскаль Pascal, который назвал в честь ученого Блеза Паскаля. Создавались и другие языки: Ада, Алгол, Кобол, Си, Пролог, Фред, Лого, Лисп и др. Но до сих пор самым популярным языком программирования является Паскаль, многие более поздние языки взяли из Паскаля основные команды и принципы построения программы, например язык Си, Си+ и система программирования Delphi, даже Бейсик, изменившись позаимствовал из Паскаля его структурированность и универсальность. Мы с вами в 11-ом классе будем изучать язык Паскаль и научимся создавать программы для решения задач с формулами, для обработки текста, научимся рисовать и создавать движущиеся рисунки.

Суперкомпьютеры

5. Будущее компьютеров

  • Преимущества искусственного интеллекта (ИИ):
  • Молекулярные компьютеры
  • Биокомпьютеры
  • Оптические компьютеры
  • Квантовые компьютеры

6. Закрепление новых знаний

Закрепление нового материала возможно с помощью теста в мультимедийной презентации к уроку: раздел «Проверь себя» в каждой части презентации: «Предыстория компьютеров», «Поколения ЭВМ», «Галерея учёных».

Проверка знаний по данной теме возможно с помощью тестов «История вычислительной техники» (Приложение 1 ) в 4-х вариантах и тест об учёных «Информатика в лицах» (Приложение 2 )

7. Подведение итогов урока

Проверка заполненных таблиц (Приложение 3 )

8. Домашнее задание

  • лекция в тетради по презентации, таблицы «Предыстория компьютеров», «Поколения ЭВМ»
  • подготовить сообщение про 5-ое поколение ЭВМ (будущее компьютеров)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО «Уральский государственный экономический университет»

Кафедра экономики и права

Филиал УрГЭУ в г. Н. Тагил

Контрольная работа

по дисциплине:

«Информатика»

Вариант 8___

Тема: «История развития средств вычислительной техники»

Исполнитель:

студент гр. 1ЭКИП

Горбунова А.А.

Преподаватель:

Скороходов Б.А.

Введение………………………………………………………………………………..3

1 Этапы развития средств вычислительной техники………………………………..4

2 Характеристика поколений ЭВМ…………………………………………………...9

3 Роль средств вычислительной техники в жизни человека………………………13

Заключение……………………………………………………………………………14

Введение

Знание истории развития вычислительной техники, является неотъемлемым компонентом профессиональной компетентности будущего специалиста в области информационных технологий. Первые шаги автоматизации умственного труда относятся именно к вычислительной активности человека, который уже на самых ранних этапах своей цивилизации начал использовать средства инструментального счета.

При этом, следует иметь в виду, что хорошо зарекомендовавшие себя средства развития вычислительной техники используются человеком и в настоящее время для автоматизации различного рода вычислений.

Автоматизированные системы являются неотъемлемой частью любого бизнеса и производства. Практически все управленческие и технологические процессы в той или иной степени используют средства вычислительной техники. Всего лишь один компьютер может заметно повысить эффективность управления предприятием, при этом не создавая дополнительных проблем. Сегодня персональные компьютеры устанавливают на каждом рабочем месте и уже, как правило, никто не сомневается в их необходимости. Значительные объемы средств вычислительной техники и их особая роль в функционировании любого предприятия ставят перед руководством целый ряд новых задач.

В данной работе будет рассмотрена история развития средств вычислительной техники, которая поможет понять и углубиться в сущность и значение ЭВМ.

1 Этапы развития средств вычислительной техники

Существует несколько этапов развития средств вычислительной техники, которыми люди пользуются и в настоящее время.

Ручной этап развития средств вычислительной техники.

Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании различных частей тела, в первую очередь, пальцев рук и ног.

Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти.

Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов.

Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Многовековой путь совершенствования абака привел к созданию счетного прибора законченной классической формы, используемого вплоть до эпохи расцвета клавишных настольных ЭВМ. Да еще и сегодня кое-где его можно встретить, помогающим в расчетных операциях. И только появление карманных электронных калькуляторов в 70-е годы нашего столетия создало реальную угрозу для дальнейшего использования русских, китайских и японских счетов - трех основных классических форм абака, сохранившихся до наших дней. При этом, последняя известная попытка усовершенствования русских счетов путем объединения их с таблицей умножения относится к 1921 г.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Джоном Непером в начале XVII века явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Джон Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира.

Механический этап развития вычислительной техники.

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда.

Первая механическая машина была описана в 1623 году Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.

Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения и вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов.

В машине Блеза Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 году первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда.

Первый арифмометр, позволяющий производить все четыре арифметических операции, был создан Готфридом Лейбницем в результате многолетнего труда. Венцом этой работы стал арифмометр Лейбница, позволяющий использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения.

Особое место среди разработок механического этапа развития вычислительной техники занимают работы Чарльза Бэббиджа, с полным основанием считающегося родоначальником и идеологом современной вычислительной техники. Среди работ Бэббиджа явно просматриваются два основных направления: разностная и аналитическая вычислительные машины.

Проект разностной машины был разработан в 20-х годах XIX века и предназначался для табулирования полиномиальных функций методом конечных разностей. Основным стимулом в данной работе была настоятельная необходимость в табулировании функций и проверке существующих математических таблиц, изобилующих ошибками.

Второй проект Бэббиджа - аналитическая машина, использующая принцип программного управления и явившуюся предшественницей современных ЭВМ. Данный проект был предложен в 30-е годы XIX века, а в 1843 году Алой Лавлейс для машины Бэббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли.

Чарльз Бэббидж в своей машине использовал механизм, аналогичный механизму ткацкого станка Жаккарда, использующему специальные управляющие перфокарты. По идее Бэббиджа управление должно осуществляться парой жакардовских механизмов с набором перфокарт в каждом.

Бэббидж имел удивительно современные представления о вычислительных машинах, однако имевшиеся в его распоряжении технические средства намного отставали от его представлений.

Электромеханический этап развития вычислительной техники.

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет. Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Германом Холлеритом в 1887 году и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт, а также механизации бухучета и экономических задач. В 1897 году Холлерит организовал фирму, которая в дальнейшем стала называться IBM.

Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов, из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

Заключительный период (40-е годы XX века) электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

Конрад Цузе явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэббиджа - в ней не предусматривалась условная передача управления. Также, в будущем, были разработаны модели Z-2 и Z-3.

Последним крупным проектом релейной вычислительной техники следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 года в основном для решения экономических задач.

Электронный этап развития вычислительной техники.

В силу физико-технической природы релейная вычислительная техника не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

Первой ЭВМ можно считать английскую машину Colossus, созданную в 1943 году при участии Алана Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием, однако была узкоспециализированной.

Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 года. Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи.

Еще до начала эксплуатации ENIAC Джона Моучли и Преспера Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.

Компьютер EDSAC положил начало новому этапу развития вычислительной техники - первому поколению универсальных ЭВМ.

2 Характеристика поколений ЭВМ

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки. В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах. В качестве конструктивно-технологической основы использовались схемы с печатным монтажом. Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина, созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

Третье поколение ЭВМ: 1970-1980-е годы

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий четвертго поколения машин было создание больших и сверхбольших интегральных схем, микропроцессора и персонального компьютера.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений.

Пятое поколение ЭВМ: 1990-настоящее время

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

3 Роль средств вычислительной техники в жизни человека.

Роль информатики в целом в современных условиях постоянно возрастает. Деятельность как отдельных людей, так и целых организаций все в большей степени зависит от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств. Внедрение компьютеров, современных средств переработки и передачи информации в различные индустрии послужило началом процесса, называемого информатизацией общества. Современное материальное производство и другие сферы деятельности все больше нуждаются в информационном обслуживании, переработке огромного количества информации. Информатизация на основе внедрения компьютерных и телекоммуникационных технологий является реакцией общества на потребность в существенном увеличении производительности труда в информационном секторе общественного производства, где сосредоточено более половины трудоспособного населения.

Информационные технологии вошли во все сферы нашей жизни. Компьютер является средством повышения эффективности процесса обучения, участвует во всех видах человеческой деятельности, незаменим для социальной сферы. Информационные технологии - это аппаратно-программные средства, базирующиеся на использовании вычислительной техники, которые обеспечивают хранение и обработку образовательной информации, доставку ее обучаемому, интерактивное взаимодействие студента с преподавателем или педагогическим программным средством, а также тестирование знаний студента.

Можно предположить, что эволюция технологии в общем и целом продолжает естественную эволюцию. Если освоение каменных орудий помогло сформироваться человеческому интеллекту, металлические повысили производительность физического труда (настолько, что отдельная прослойка общества освободилась для интеллектуальной деятельности), машины механизировали физический труд, то информационная технология призвана освободить человека от рутинного умственного труда, усилить его творческие возможности.

Заключение

Жить в XXI веке образованным человеком можно, только хорошо владея информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства.

С помощью изучения истории развития средств вычислительной техники можно познать все строение и значение ЭВМ в жизни человека. Это поможет лучше в них разбираться и с легкостью воспринимать новые прогрессирующие технологии, ведь не нужно забывать о том, что компьютерные технологии прогрессируют, почти, каждый день и если не разобраться в строении машин, которые были много лет назад, трудно будет преодолеть нынешнее поколение.

В представленной работе удалось показать с чего начиналось и чем заканчивается развитие средств вычислительной техники и какую важную роль играют они для людей в настоящее время.